34 research outputs found

    An Inverse Method for the Design of Structures

    Get PDF
    Inverse methods are powerful design tools that allow engineers to obtain efficient designs at much lower costs than the ones normally involved in experimental and direct computational design. Here we present an inverse method which allows the efficient design of deformable structures or components, such for example airplane wings. The inverse method proposed here allows the engineers to obtain the actual unloaded geometry they should request to a manufacture department, so as to obtain a structure or piece that under the work loads will deform to a pre-specified ideal shape. In the case of an airplane wing or an airfoil, for example, the engineer will be able to obtain the undeformed geometry of the wing such when it is flying at cruise speed subject to the aerodynamics loads, the wing will naturally deform to a pre-specified (and aerodynamically desired) shape. The presented inverse method is based on a novel formulation builded in terms of the finite element method.Fil: Limache, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentin

    A Fully Coupled Formulation For Incompressible Fluid-Elastic Structure-Interactions

    Get PDF
    We present a general formulation for analysis of fluid flows with structural interactions using the particle finite element method (PFEM). The fluids are fully coupled to the structures that can undergo highly non-linear response due to large deformations. The key feature of the PFEM is the use of an updated Lagrangian description to model the motion of nodes(particles) in both the fluid and the structure domains. A mesh connects the nodes defining the discretized domains where the governing equations, expressed in an integral form are solved as in the standard FEM. A fractional step scheme for the transient coupled fluid-structure solution is described. Examples of application of the PFEM method to solve a number of fluidstructure interaction problems including free-fluid-surfaces, breaking waves and fluid particle separation may be easily solved with this formulation are presented.Fil: Marti, Julio Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Idelsohn, Sergio Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Limache, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentin

    Laplace Form Of Navier-Stokes Equations: A Safe Path Or A Wrong Way?

    Get PDF
    The Navier-Stokes Equations written in Laplace form are often the departure point for the simulation of viscous newtonian flows and some studies of numerical stability. Researchers may not be fully aware that the “physical traction boundary conditions” are not the “natural boundary conditions” of the Laplace form of the Navier-Stokes Equations. This is not a problem per se, as long as one manages to rigurously incorporate the physical boundary conditions into the formulation. However, we have discovered that if some seemenly harmless assumptions are made, like using pseudo-tractions (i.e the natural boundary conditions of the Laplace form) or neglecting viscous terms on the free-surfaces, the resulting formulation violates a basic axiom of continuum mechanics: the principle of objectivity. In the present article we give an accurate account about these topics. We also show that unexpected differences may sometimes arise between Laplace discretizations and Divergence discretizations.Fil: Limache, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Idelsohn, Sergio Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentin

    On The Development Of Finite Volume Methods For Computational Solid Mechanics

    Get PDF
    Since its initial development as a tool for structural analysis around the mid-fifties the Finite Element Method (FEM) has evolved to become the most popular and used method in modern Computational Solid Mechanics. On the other hand, the Finite Volume Method (FVM) born almost at the same time, has evolved too and become one of the most popular methods in the area of Computational Fluid Mechanics. Both methods have surpassed the historical finite differences method and other discretization methods, and nowadays, researchers typically use one or the other to obtain numerical simulations of all types of physical phenomena. However, although FEM is at present being actively used to solve the equations of compressible and incompressible flows, there are not many works about the usage of FVM in solving the equations of solid materials. The physical flavor, the conservation properties and some properties of reduced integration of the FVM, are advantages that could be very useful in the context of Computational Solid Mechanics as they are in the context of Computational Fluid Mechanics (CFD). In the present work we show our first results in our attempt to develop a Finite Volume Method for Non-linear Solid Mechanics.Fil: Limache, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Idelsohn, Sergio Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentin

    Simulación de Fluidos en Tiempo Real Usando SPH

    Get PDF
    Este trabajo presenta las principales características de una formulación computacional desarrollada por los autores y basada en el método llamado Smoothed Particle Hydrodynamics. La formulación resuelve numéricamente las ecuaciones de Navier-Stokes permitiendo la simulación de dinámica de fluidos, tanto compresibles como casi-incompresibles. El método es simple, explícito, computacionalmente rápido y apto para la computación en paralelo. Estas características, junto con el empleo de técnicas avanzadas de computación y visualización han sido utilizadas para el desarrollo de una plataforma de simulación virtual de dinámica de fluidos con la que se puede cambiar interactivamente propiedades físicas del fluido, condiciones de contorno como el movimiento de paredes o la aparición de fuerzas externas, así como también parámetros del método computacional (nivel de viscosidad artificial, tipo de integrador temporal, etc.). La mencionada interacción con el usuario ocurre en tiempo real y mientras transcurre la simulación. La velocidad de cómputo y la capacidad de interacción permiten resolver problemas de manera dinámica y con mayor rápidez, aprovechando que se puede ver y estudiar en tiempo real la respuesta del fluido a cambios de diseño o de configuración del problema físico a resolver.Fil: Rojas Fredini, Pablo Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); ArgentinaFil: Limache, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentin

    Arquitectura Orientada a Componentes Basada en Reflexión para Motores Físicos

    Get PDF
    Junto con la evolución de las computadoras, han surgido nuevos lenguajes y paradigmas de programación con características destacables que abren interesantes posibilidades en el campo de la simulación y de la visualización en tiempo real. En el presente trabajo se explotan algunos de estos nuevos conceptos para el desarrollo de un motor de simulación física en tiempo real. El motor de simulación utiliza primariamente una arquitectura orientada a componentes y basada en la propiedad de reflexión que poseen algunos lenguajes modernos como los basados en .NET de Microsoft. El nuevo diseño permite desarrollar simuladores de objetos físicos cuyas propiedades pueden ser modificadas en tiempo de ejecución evitando la necesidad de crear interfaces con lenguajes externos de "scripting". El diseño también permite el agregado de nuevos componentes (con nuevos fenómenos u objetos físicos) y la generación automática de interfaces gráficas y de configuración. Los distintos componentes pueden estar escritos en diferentes lenguajes y pueden agregarse de manera transparente. Como ejemplo concreto de su capacidad, se muestra la aplicación del motor en la simulación simultanea en tiempo real de sólidos rígidos. El objetivo del presente desarrollo es generar una plataforma eficiente para la simulación de vehículos terrestres, aéreos y fluidos en tiempo real.Fil: Rojas Fredini, Pablo Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); ArgentinaFil: Limache, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentin

    A Tensor Library for Scientific Computing

    Get PDF
    The majority of physical phenomena and their computational simulations are described mathematically in terms of tensors and their different algebraic operations. Possibly the most used tensors are the ones of rank 1 and 2, which correspond to the algebraic concepts of vectors and matrices, respectively. Nevertheless, higher rank tensors (specially 3 and 4) appear at all times in different branches of physics and in numerical methods. One of the major drawbacks of high performance computing is that the code necessary to perform such tensor operations looks different and it is several lines longer than the corresponding one-line mathematical representation. Here we present a C++ tensor library, called LTensor, that we have developed using modern concepts of object oriented design and expression templates. As it will be shown, the LTensor library is able to mimic the classical indicial notation and follows Einstein convention about indices. Furthermore, it has other additional features than distinguish it from other libraries based on similar concepts: dynamic dimension size, arbitrary contraction order, customizable storage, inherited class structure, arbitrary looping positions on indicial notations, etc.Fil: Limache, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Rojas Fredini, Pablo Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentin

    Control Predictivo Aplicado a Modelos Simples de Aviones

    Get PDF
    Este trabajo presenta los primeros pasos en el desarrollo de sistemas de control para aviones. Como primera aplicación nuestro sistema a controlar es un modelo longitudinal de un avión. El mismo presenta tres grados de libertad: movimiento de traslación, movimiento de pitch y movimiento en el plano vertical. En primera instancia trabajamos con el modelo linealizado del mismo pudiendo luego comparar los resultados obtenidos al utilizar el sistema no lineal. La técnica de control elegida es Model Predictive Control (MPC). Esta técnica nos permite realizar maniobras con nuestro avión al aplicarle al mismo el control óptimo resultante de la minimización de una función costo sujeta a restricciones provenientes de la mecánica y de la física propias del sistema. Este trabajo nos servirá como base para el desarrollo de sistemas de control para modelos de aviones más sofisticados.Fil: Murillo, Marina Hebe. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Limache, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Giovanini, Leonardo Luis. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Diseño de un Moderno Simulador de Vuelo en Tiempo Real

    Get PDF
    Este trabajo presenta detalles del diseño del Simulador de Vuelo que se está desarrollando en el Centro Internacional de Métodos Computacionales en Ingeniería (CIMEC). El Simulador de Vuelo permite recrear por computadora el comportamiento de un avión real y está capacitado para responder mediante hardward (que simula la cabina del avión) al comando de un piloto. Un sistema de visualización virtual permite ver las propiedades del terreno y visualizar en tiempo real el movimiento del avión con respecto al mismo. También se puede ver el movimiento del avión desde tierra, desde el aire o inclusive desde el punto de vista del piloto. Además de las aplicaciones educativas o de entrenamiento que tiene un simulador, existen aplicaciones científicas diversas. Una de ellas es que mediante el simulador se pueden diseñar y testear en tiempo real sistemas de control automático. Los sistemas de control automático y la lectura de señales de los Sistemas de Navegación Inercial forman la piedra angular para el desarrollo de Vehículos Aéreos No-Tripulados (UAVs). Por lo tanto, en el futuro, el simulador será utilizado como plataforma de desarrollo virtual de UAVs. En este trabajo se describen los modernos conceptos de diseño con que el simulador se está construyendo. Se muestran como se simulan las distintos sistemas que forman el avión y como éstos se pueden programar independientemente como simples plugins. Se muestran las técnicas de visualización que corren en paralelo en hilos de proceso independiente.Fil: Limache, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); ArgentinaFil: Rojas Fredini, Pablo Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); ArgentinaFil: Murillo, Marina Hebe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentin

    Simulación Interactiva de Dinámica de Fluidos con Transferencia de Calor mediante Métodos de Partículas

    Get PDF
    Este trabajo esta dedicado a mostrar los primeros resultados obtenidos en simulación de problemas acoplados de dinámica de fluidos y de transferencia de calor usando el método de partículas llamado Smoothed Particle Hydrodynamics (SPH). La técnica empleada consiste en la solución simultánea de las ecuaciones de dinámica de fluidos y de transferencia de calor en formulación Lagrangiana usando una discretización tipo SPH desarrollada en el CIMEC. Aquí se presentan las primeras validaciones del modelo y los primeros ejemplos de su aplicación. En el trabajo se podrá apreciar como influyen los fenómenos de advección en la transferencia de calor. Los ejemplos y el código han sido corridos en una plataforma de simulación también desarrollada en el CIMEC. La plataforma permite cambiar interactivamente propiedades físicas del fluido, condiciones de contorno como el movimiento de paredes, o su temperatura, todo ello interactivamente mientras transcurre la simulación. El desarrollo permitirá la solución y simulación interactiva de variados e interesantes problemas de convección natural y transferencia de calor.Fil: Limache, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); ArgentinaFil: Rojas Fredini, Pablo Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); ArgentinaFil: Fachinotti, Victor Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentin
    corecore